
Chapter 9

Dealing with Errors
In This Chapter

▶ Defining problems in communication with Python

▶ Understanding error sources

▶ Handling error conditions

▶ Specifying that an error has occurred

▶ Developing your own error indicators

▶ Performing tasks even after an error occurs

M
 
ost application code of any complexity has errors in it. When your 
application suddenly freezes for no apparent reason, that’s an error. 

Seeing one of those obscure message dialog boxes is another kind of error. 
However, errors can occur that don’t provide you with any sort of notification. 
An application might perform the wrong computation on a series of numbers 
you provide, resulting in incorrect output that you may never know about 
unless someone tells you that something is wrong or you check for the issue 
yourself. Errors need not be consistent, either. You may see them on some 
occasions and not on others. For example, an error can occur only when the 
weather is bad or the network is overloaded. In short, errors occur in all sorts 
of situations and for all sorts of reasons. This chapter tells you about all sorts 
of errors and what to do when your application encounters them.

It shouldn’t surprise you that errors occur — applications are written by 
humans, and humans make mistakes. Most developers call application errors 
exceptions, meaning that they’re the exception to the rule. Because excep-
tions do occur in applications, you need to detect and do something about 
them whenever possible. The act of detecting and processing an exception is 
called error handling or exception handling. In order to properly detect errors, 
you need to know about error sources and why errors occur in the first place. 
When you do detect the error, you must process it by catching the exception. 
Catching an exception means examining it and possibly doing something 
about it. So, another part of this chapter is about discovering how to perform 
exception handling in your own application.



150 Part II: Talking the Talk 

Sometimes your code detects an error in the application. When this hap-
pens, you need to raise or throw an exception. You see both terms used for 
the same thing, which simply means that your code encountered an error it 
couldn’t handle, so it passed the error information onto another piece of code 
to handle (interpret, process, and, with luck, fix the exception). In some cases, 
you use custom error message objects to pass on the information. Even 
though Python has a wealth of generic message objects that cover most situ-
ations, some situations are special. For example, you might want to provide 
special support for a database application, and Python won’t normally cover 
that contingency with a generic message object. It’s important to know when 
to handle exceptions locally, when to send them to the code that called your 
code, and when to create special exceptions so that every part of the applica-
tion knows how to handle the exception — all topics covered by this chapter.

There are also times when you must ensure that your application handles 
an exception gracefully, even if that means shutting the application down. 
Fortunately, Python provides the finally clause, which always executes, 
even when an exception occurs. You can place code to close files or perform 
other essential tasks in the code block associated with this clause. Even 
though you won’t perform this task all the time, it’s the last topic discussed 
in the chapter.

Knowing Why Python Doesn’t 
Understand You

Developers often get frustrated with programming languages and  computers 
because they seemingly go out of their way to cause communication problems. 
Of course, programming languages and computers are both inanimate — there 
is no desire for anything on the part of either. Programming languages and 
 computers also don’t think; they accept whatever the developer has to say 
quite literally. Therein lies the problem.

 Neither Python nor the computer will “know what you mean” when you 
type instructions as code. Both follow whatever instructions you provide to 
the letter and literally as you provide them. You may not have meant to tell 
Python to delete a data file unless some absurd condition occurred. However, 
if you don’t make the conditions clear, Python will delete the file whether the 
condition exists or not. When an error of this sort happens, people commonly 
say that the application has a bug in it. Bugs are simply coding errors that you 
can remove using a debugger. (A debugger is a special kind of tool that lets you 
stop or pause application execution, examine the content of variables, and 
generally dissect the application to see what makes it tick.)



151 Chapter 9: Dealing with Errors

Errors occur in many cases when the developer makes assumptions that 
simply aren’t true. Of course, this includes assumptions about the application 
user, who probably doesn’t care about the extreme level of care you took when 
crafting your application. The user will enter bad data. Again, Python won’t 
know or care that the data is bad and will process it even when your intent was 
to disallow the bad input. Python doesn’t understand the concepts of good or 
bad data; it simply processes incoming data according to any rules you set, 
which means that you must set rules to protect users from themselves.

Python isn’t proactive or creative — those qualities exist only in the developer. 
When a network error occurs or the user does something unexpected, Python 
doesn’t create a solution to fix the problem. It only processes code. If you don’t 
provide code to handle the error, the application is likely to fail and crash 
ungracefully — possibly taking all of the user’s data with it. Of course, the devel-
oper can’t anticipate every potential error situation, either, which is why most 
complex applications have errors in them — errors of omission, in this case.

 Some developers out there think they can create bulletproof code, despite 
the absurdity of thinking that such code is even possible. Smart developers 
assume that some number of bugs will get through the code-screening pro-
cess, that nature and users will continue to perform unexpected actions, and 
that even the smartest developer can’t anticipate every possible error condi-
tion. Always assume that your application is subject to errors that will cause 
exceptions; that way, you’ll have the mindset required to actually make your 
application more reliable.

Considering the Sources of Errors
You might be able to divine the potential sources of error in your applica-
tion by reading tea leaves, but that’s hardly an efficient way to do things. 
Errors actually fall into well-defined categories that help you predict (to some 
degree) when and where they’ll occur. By thinking about these categories as 
you work through your application, you’re far more likely to discover poten-
tial errors sources before they occur and cause potential damage. The two 
principle categories are

 ✓ Errors that occur at a specific time

 ✓ Errors that are of a specific type

The following sections discuss these two categories in greater detail. The 
overall concept is that you need to think about error classifications in order 
to start finding and fixing potential errors in your application before they 
become a problem.



152 Part II: Talking the Talk 

Classifying when errors occur
Errors occur at specific times. The two major time frames are

 ✓ Compile time

 ✓ Runtime

No matter when an error occurs, it causes your application to misbehave. 
The following sections describe each time frame.

Compile time
A compile time error occurs when you ask Python to run the application. 
Before Python can run the application, it must interpret the code and put it 
into a form that the computer can understand. A computer relies on machine 
code that is specific to that processor and architecture. If the instructions 
you write are malformed or lack needed information, Python can’t perform 
the required conversion. It presents an error that you must fix before the 
application can run.

Fortunately, compile-time errors are the easiest to spot and fix. Because the 
application won’t run with a compile-time error in place, user never sees this 
error category. You fix this sort of error as you write your code.

 The appearance of a compile-time error should tell you that other typos or 
omissions could exist in the code. It always pays to check the surrounding 
code to ensure that no other potential problems exist that might not show up 
as part of the compile cycle.

Runtime
A runtime error occurs after Python compiles the code you write and the com-
puter begins to execute it. Runtime errors come in several different types, and 
some are harder to find than others. You know you have a runtime error when 
the application suddenly stops running and displays an exception dialog box 
or when the user complains about erroneous output (or at least instability).

 Not all runtime errors produce an exception. Some runtime errors cause instabil-
ity (the application freezes), errant output, or data damage. Runtime errors can 
affect other applications or create unforeseen damage to the platform on which 
the application is running. In short, runtime errors can cause you quite a bit of 
grief, depending on precisely the kind of error you’re dealing with at the time.

Many runtime errors are caused by errant code. For example, you can mis-
spell the name of a variable, preventing Python from placing information in 
the correct variable during execution. Leaving out an optional but necessary 



153 Chapter 9: Dealing with Errors

argument when calling a method can also cause problems. These are exam-
ples of errors of commission, which are specific errors associated with your 
code. In general, you can find these kinds of errors using a debugger or by 
simply reading your code line by line to check for errors.

Runtime errors can also be caused by external sources not associated with 
your code. For example, the user can input incorrect information that the 
application isn’t expecting, causing an exception. A network error can make a 
required resource inaccessible. Sometimes even the computer hardware has 
a glitch that causes a nonrepeatable application error. These are all examples 
of errors of omission, from which the application might recover if your appli-
cation has error-trapping code in place. It’s important that you consider both 
kinds of runtime errors — errors of commission and omission — when build-
ing your application.

Distinguishing error types
You can distinguish errors by type, that is, by how they’re made. Knowing the 
error types helps you understand where to look in an application for poten-
tial problems. Exceptions work like many other things in life. For example, 
you know that electronic devices don’t work without power. So, when you 
try to turn your television on and it doesn’t do anything, you might look to 
ensure that the power cord is firmly seated in the socket.

 Understanding the error types helps you locate errors faster, earlier, and more 
consistently, resulting in fewer misdiagnoses. The best developers know that 
fixing errors while an application is in development is always easier than fixing 
it when the application is in production because users are inherently impa-
tient and want errors fixed immediately and correctly. In addition, fixing an 
error earlier in the development cycle is always easier than fixing it when the 
application nears completion because less code exists to review.

The trick is to know where to look. With this in mind, Python (and most other 
programming languages) breaks errors into the following types:

 ✓ Syntactical

 ✓ Semantic

 ✓ Logical

The following sections examine each of these error types in more detail. I’ve 
arranged the sections in order of difficulty, starting with the easiest to find. 
A syntactical error is generally the easiest; a logical error is generally the 
hardest.



154 Part II: Talking the Talk 

Syntactical
Whenever you make a typo of some sort, you create a syntactical error. Some 
Python syntactical errors are quite easy to find because the application 
simply doesn’t run. The interpreter may even point out the error for you by 
highlighting the errant code and displaying an error message. However, some 
syntactical errors are quite hard to find. Python is case sensitive, so you may 
use the wrong case for a variable in one place and find that the variable isn’t 
quite working as you thought it would. Finding the one place where you used 
the wrong capitalization can be quite challenging.

 Most syntactical errors occur at compile time and the interpreter points them 
out for you. Fixing the error is made easy because the interpreter generally 
tells you what to fix, and with considerable accuracy. Even when the inter-
preter doesn’t find the problem, syntactical errors prevent the application 
from running correctly, so any errors the interpreter doesn’t find show up 
during the testing phase. Few syntactical errors should make it into produc-
tion as long as you perform adequate application testing.

Semantic
When you create a loop that executes one too many times, you don’t gener-
ally receive any sort of error information from the application. The applica-
tion will happily run because it thinks that it’s doing everything correctly, but 
that one additional loop can cause all sorts of data errors. When you create 
an error of this sort in your code, it’s called a semantic error.

 Semantic errors occur because the meaning behind a series of steps used to 
perform a task is wrong — the result is incorrect even though the code appar-
ently runs precisely as it should. Semantic errors are tough to find, and you 
sometimes need some sort of debugger to find them. (Chapter 19 provides 
a discussion of tools that you can use with Python to perform tasks such as 
debugging applications. You can also find blog posts about debugging on my 
blog at http://blog.johnmuellerbooks.com.)

Logical
Some developers don’t create a division between semantic and logical errors, 
but they are different. A semantic error occurs when the code is essentially 
correct but the implementation is wrong (such as having a loop execute once 
too often). Logical errors occur when the developer’s thinking is faulty. In 
many cases, this sort of error happens when the developer uses a relational 
or logical operator incorrectly. However, logical errors can happen in all sorts 
of other ways, too. For example, a developer might think that data is always 
stored on the local hard drive, which means that the application may behave 
in an unusual manner when it attempts to load data from a network drive 
instead.



155 Chapter 9: Dealing with Errors

 Logical errors are quite hard to fix because the problem isn’t with the actual 
code, yet the code itself is incorrectly defined. The thought process that went 
into creating the code is faulty; therefore, the developer who created the error 
is less likely to find it. Smart developers use a second pair of eyes to help spot 
logical errors. Having a formal application specification also helps because the 
logic behind the tasks the application performs is usually given a formal review.

Catching Exceptions
Generally speaking, a user should never see an exception dialog box. Your 
application should always catch the exception and handle it before the user 
sees it. Of course, the real world is different — users do see unexpected 
exceptions from time to time. However, catching every potential exception is 
still the goal when developing an application. The following sections describe 
how to catch exceptions and handle them.

Understanding the built-in exceptions
Python comes with a host of builtin  
exceptions — far more than you might think 
possible. You can see a list of these exceptions 
at https://docs.python.org/3.3/
library/exceptions.html. The docu
mentation breaks the exception list down into 
categories. Here is a brief overview of the 
Python exception categories that you work 
with regularly:

 ✓ Base classes: The base classes provide 
the essential building blocks (such as the 
Exception exception) for other excep
tions. However, you might actually see 
some of these exceptions, such as the 
ArithmeticError exception, when 
working with an application.

 ✓ Concrete exceptions: Applications can 
experience hard errors — errors that are 
hard to overcome because there really 
isn’t a good way to handle them or they 
signal an event that the application must 
handle. For example, when a system 
runs out of memory, Python generates a 
MemoryError exception. Recovering 

from this error is hard because it isn’t always 
possible to release memory from other uses. 
When the user presses an interrupt key 
(such as Ctrl+C or Delete), Python gener
ates a KeyboardInterrupt exception. 
The application must handle this exception 
before proceeding with any other tasks.

 ✓ OS exceptions: The operating system can 
generate errors that Python then passes 
them along to your application. For exam
ple, if your application tries to open a file 
that doesn’t exist, the operating system 
generates a FileNotFoundError 
exception.

 ✓ Warnings: Python tries to warn you about 
unexpected events or actions that could 
result in errors later. For example, if you 
try to inappropriately use a resource, 
such as an icon, Python generates a 
ResourceWarning  exception. It’s 
important to remember that this particular 
category is a warning and not an actual 
error: Ignoring it can cause you woe later, 
but you can ignore it.



156 Part II: Talking the Talk 

Basic exception handling
To handle exceptions, you must tell Python that you want to do so and then 
provide code to perform the handling tasks. You have a number of ways in 
which you can perform this task. The following sections start with the sim-
plest method first and then move on to more complex methods that offer 
added flexibility.

Handling a single exception
In Chapter 7, the IfElse.py and other examples have a terrible habit of 
spitting out exceptions when the user inputs unexpected values. Part of the 
solution is to provide range checking. However, range checking doesn’t over-
come the problem of a user typing text such as Hello in place of an expected 
numeric value. Exception handling provides a more complex solution to the 
problem, as described in the following steps. This example also appears with 
the downloadable source code as BasicException1.py.

 1. Open a Python File window.

  You see an editor in which you can type the example code.

 2. Type the following code into the window — pressing Enter after 
each line:

try:
   Value = int(input("Type a number between 1 and 10: 

"))
except ValueError:
   print("You must type a number between 1 and 10!")
else:

   if (Value > 0) and (Value <= 10):
      print("You typed: ", Value)
   else:
      print("The value you typed is incorrect!")

  The code within the try block has its exceptions handled. In this case, 
handling the exception means getting input from the user using the 
int(input()) calls. If an exception occurs outside this block, the code 
doesn’t handle it. With reliability in mind, the temptation might be to 
enclose all the executable code in a try block so that every exception 
would be handled. However, you want to make your exception handling 
small and specific to make locating the problem easier.



157 Chapter 9: Dealing with Errors

  The except block looks for a specific exception in this case: ValueError. 
When the user creates a ValueError exception by typing Hello instead 
of a numeric value, this particular exception block is executed. If the 
user were to generate some other exception, this except block wouldn’t 
handle it.

  The else block contains all the code that is executed when the try 
block code is successful (doesn’t generate an exception). The remain-
der of the code is in this block because you don’t want to execute it 
unless the user does provide valid input. When the user provides a 
whole number as input, the code can then range check it to ensure that 
it’s correct.

 3. Choose Run➪Run Module.

  You see a Python Shell window open. The application asks you to type a 
number between 1 and 10.

 4. Type Hello and press Enter.

  The application displays an error message, as shown in Figure 9-1.

 

Figure 9-1: 

Typing 

the wrong 

input type 

generates 

an error 

instead 

of an 

exception.

 

 5. Perform Steps 3 and 4 again, but type 5.5 instead of Hello.

  The application generates the same error message, as shown in 
Figure 9-1.

 6. Perform Steps 3 and 4 again, but type 22 instead of Hello.

  The application outputs the expected range error message, as shown in 
Figure 9-2. Exception handling doesn’t weed out range errors. You must 
still check for them separately.



158 Part II: Talking the Talk 

 

Figure 9-2: 

Exception 

handling 

doesn’t 

ensure that 

the value is 

in the cor

rect range.

 

 7. Perform Steps 3 and 4 again, but type 7 instead of Hello.

  This time, the application finally reports that you’ve provided a correct 
value of 7. Even though it seems like a lot of work to perform this level 
of checking, you can’t really be certain that your application is working 
correctly without it.

 8. Perform Steps 3 and 4 again, but press Ctrl+C, Cmd+C, or the alterna-
tive for your platform instead of typing anything.

  The application generates a KeyboardInterrupt exception, as shown in 
Figure 9-3. Because this exception isn’t handled, it’s still a problem for the 
user. You see several techniques for fixing this problem later in the chapter.

Using the except clause without an exception
You can create an exception handling block in Python that’s generic because 
it doesn’t look for a specific exception. In most cases, you want to provide a 
specific exception when performing exception handling for these reasons:

 ✓ To avoid hiding an exception you didn’t consider when designing the 
application

 ✓ To ensure that others know precisely which exceptions your application 
will handle

 ✓ To handle the exceptions correctly using specific code for that 
exception



159 Chapter 9: Dealing with Errors

 

Figure 9-3: 

The excep

tion han

dling in this 

example 

deals 

only with 

Value 
Error 

exceptions.

 

However, sometimes you may need a generic exception-handling capability, 
such as when you’re working with third-party libraries or interacting with 
an external service. The following steps demonstrate how to use an except 
clause without a specific exception attached to it. This example also appears 
with the downloadable source code as BasicException2.py.

 1. Open a Python File window.

  You see an editor in which you can type the example code.



160 Part II: Talking the Talk 

 2. Type the following code into the window — pressing Enter after 
each line:

try:
   Value = int(input("Type a number between 1 and 10: 

"))
except:
   print("You must type a number between 1 and 10!")
else:

   if (Value > 0) and (Value <= 10):
      print("You typed: ", Value)
   else:
      print("The value you typed is incorrect!")

  The only difference between this example and the previous example is 
that the except clause doesn’t have the ValueError exception specifi-
cally associated with it. The result is that this except clause will also 
catch any other exception that occurs.

 3. Choose Run➪Run Module.

  You see a Python Shell window open. The application asks you to type a 
number between 1 and 10.

 4. Type Hello and press Enter.

  The application displays an error message (refer to Figure 9-1).

 5. Perform Steps 3 and 4 again, but type 5.5 instead of Hello.

  The application generates the same error message (again, refer to 
Figure 9-1).

 6. Perform Steps 3 and 4 again, but type 22 instead of Hello.

  The application outputs the expected range error message (refer to 
Figure 9-2). Exception handling doesn’t weed out range errors. You must 
still check for them separately.

 7. Perform Steps 3 and 4 again, but type 7 instead of Hello.

  This time, the application finally reports that you’ve provided a correct 
value of 7. Even though it seems like a lot of work to perform this level 
of checking, you can’t really be certain that your application is working 
correctly without it.

 8. Perform Steps 3 and 4 again, but press Ctrl+C, Cmd+C, or the alterna-
tive for your platform instead of typing anything.

  You see the error message that’s usually associated with input error, as 
shown in Figure 9-4. The error message is incorrect, which might con-
fuse users. However, the plus side is that the application didn’t crash, 



161 Chapter 9: Dealing with Errors

which means that you won’t lose any data and the application can 
recover. Using generic exception handling does have some advantages, 
but you must use it carefully.

 

Figure 9-4: 

Generic 

exception 

handling 

traps the 

Keyboard 
Inter-

rupt  

exception.

 

Working with exception arguments
Most exceptions don’t provide arguments (a list of values that you can 
check for additional information). The exception either occurs or it doesn’t. 
However, a few exceptions do provide arguments, and you see them used 
later in the book. The arguments tell you more about the exception and pro-
vide details that you need to correct it.

 For the sake of completeness, this chapter includes a simple example that 
generates an exception with an argument. You can safely skip the remainder of 
this section if desired because the information is covered in more detail later 
in the book. This example also appears with the downloadable source code as 
ExceptionWithArguments.py.



162 Part II: Talking the Talk 

 1. Open a Python File window.

  You see an editor in which you can type the example code.

 2. Type the following code into the window — pressing Enter after 
each line:

import sys

try:
   File = open('myfile.txt')
except IOError as e:
   print("Error opening file!\r\n" +
      "Error Number: {0}\r\n".format(e.errno) +
      "Error Text: {0}".format(e.strerror))
else:
   print("File opened as expected.")
   File.close();

  This example uses some advanced features. The import statement 
obtains code from another file. Chapter 10 tells you how to use this 
Python feature.

  The open() function opens a file and provides access to the file through 
the File variable. Chapter 15 tells you how file access works. Given that 
myfile.txt doesn’t exist in the application directory, the operating 
system can’t open it and will tell Python that the file doesn’t exist.

  Trying to open a nonexistent file generates an IOError exception. This 
particular exception provides access to two arguments:

	 •	errno: Provides the operating system error number as an integer

	 •	strerror: Contains the error information as a human-readable 
string

  The as clause places the exception information into a variable, e, that 
you can access as needed for additional information. The except block 
contains a print() call that formats the error information into an easily 
read error message.

  If you should decide to create the myfile.txt file, the else clause 
executes. In this case, you see a message stating that the file opened 
normally. The code then closes the file without doing anything with it.

 3. Choose Run➪Run Module.

  You see a Python Shell window open. The application displays the Error 
opening file information, as shown in Figure 9-5.



163 Chapter 9: Dealing with Errors

 

Figure 9-5: 

Attempting 

to open a 

nonexistent 

file never 

works.

 

Obtaining a list of exception arguments
The list of arguments supplied with exceptions varies by exception and by what the sender pro
vides. It isn’t always easy to figure out what you can hope to obtain in the way of additional informa
tion. One way to handle the problem is to simply print everything using code like this (this example 
also appears with the downloadable source code as GetExceptionArguments1.py):

import sys

try:
   File = open('myfile.txt')
except IOError as e:
   for Arg in e.args:
      print(Arg)
else:
   print("File opened as expected.")
   File.close();

The args property always contains a list of the exception arguments in string format. You can 
use a simple for loop to print each of the arguments. The only problem with this approach is that 
you’re missing the argument names, so you know the output information (which is obvious in this 
case), but you don’t know what to call it.

A more complex method of dealing with the issue is to print both the names and the contents of the 
arguments. The following code displays both the names and the values of each of the arguments 
(this example also appears with the downloadable source as GetExceptionArguments2.py):

import sys

try:
   File = open('myfile.txt')

(continued)



164 Part II: Talking the Talk 

Handling multiple exceptions with a single except clause
Most applications can generate multiple exceptions for a single line of code. 
This fact demonstrated earlier in the chapter with the BasicException1.
py example. How you handle the multiple exceptions depends on your goals 
for the application, the types of exceptions, and the relative skill of your 
users. Sometimes when working with a less skilled user, it’s simply easier to 
say that the application experienced a nonrecoverable error and then log the 
details into a log file in the application directory or a central location.

 Using a single except clause to handle multiple exceptions works only 
when a common source of action fulfills the needs of all the exception types. 
Otherwise, you need to handle each exception individually. The follow-
ing steps show how to handle multiple exceptions using a single except 
clause. This example also appears with the downloadable source code as 
MultipleException1.py.

except IOError as e:
   for Entry in dir(e):
      if (not Entry.startswith("_")):
         try:
            print(Entry, " = ", e.__getattribute__(Entry))
         except AttributeError:
            print("Attribute ", Entry, " not accessible.")
else:
   print("File opened as expected.")
   File.close();

In this case, you begin by getting a listing of the attributes associated with the error argument 
object using the dir() function. The output of the dir() function is a list of strings containing 
the names of the attributes that you can print. Only those arguments that don’t start with an under
score (_) contain useful information about the exception. However, even some of those entries are 
inaccessible, so you must encase the output code in a second try...except block (see the 
“Nested exception handling” section, later in the chapter, for details).

The attribute name is easy because it’s contained in Entry. To obtain the value associated with 
that attribute, you must use the __getattribute__() function and supply the name of the 
attribute you want. When you run this code, you see both the name and the value of each of the attri
butes supplied with a particular error argument object. In this case, the actual output is as follows:

args  =  (2, 'No such file or directory')
Attribute  characters_written  not accessible.
errno  =  2
filename  =  myfile.txt
strerror  =  No such file or directory
winerror  =  None
with_traceback  =  <built-in method with_traceback of 
   FileNotFoundError object at 0x0000000003416DC8>

(continued)



165 Chapter 9: Dealing with Errors

 1. Open a Python File window.

  You see an editor in which you can type the example code.

 2. Type the following code into the window — pressing Enter after 
each line:

try:
   Value = int(input("Type a number between 1 and 10: 

"))
except (ValueError, KeyboardInterrupt):
   print("You must type a number between 1 and 10!")
else:

   if (Value > 0) and (Value <= 10):
      print("You typed: ", Value)
   else:
      print("The value you typed is incorrect!")

  This code is very much like the BasicException1.py. However, 
notice that the except clause now sports both a ValueError and a 
KeyboardInterrupt exception. In addition, these exceptions appear 
within parentheses and are separated by commas.

 3. Choose Run➪Run Module.

  You see a Python Shell window open. The application asks you to type a 
number between 1 and 10.

 4. Type Hello and press Enter.

  The application displays an error message (refer to Figure 9-1).

 5. Perform Steps 3 and 4 again, but type 22 instead of Hello.

  The application outputs the expected range error message (refer to 
Figure 9-2).

 6. Perform Steps 3 and 4 again, but press Ctrl+C, Cmd+C, or the alterna-
tive for your platform instead of typing anything.

  You see the error message that’s usually associated with error input 
(refer to Figure 9-1).

 7. Perform Steps 3 and 4 again, but type 7 instead of Hello.

  This time, the application finally reports that you’ve provided a correct 
value of 7.

Handling multiple exceptions with multiple except clauses
When working with multiple exceptions, it’s usually a good idea to place each 
exception in its own except clause. This approach allows you to provide 
custom handling for each exception and makes it easier for the user to know 
precisely what went wrong. Of course, this approach is also a lot more work. 



166 Part II: Talking the Talk 

The following steps demonstrate how to perform exception handling using 
multiple except clauses. This example also appears with the downloadable 
source code as MultipleException2.py.

 1. Open a Python File window.

  You see an editor in which you can type the example code.

 2. Type the following code into the window — pressing Enter after 
each line:

try:
   Value = int(input("Type a number between 1 and 10: 

"))
except ValueError:
   print("You must type a number between 1 and 10!")
except KeyboardInterrupt:
   print("You pressed Ctrl+C!")
else:

   if (Value > 0) and (Value <= 10):
      print("You typed: ", Value)
   else:
      print("The value you typed is incorrect!")

  Notice the use of multiple except clauses in this case. Each except 
clause handles a different exception. You can use a combination of 
techniques, with some except clauses handling just one exception and 
other except clauses handling multiple exceptions. Python lets you use 
the approach that works best for the error-handling situation.

 3. Choose Run➪Run Module.

  You see a Python Shell window open. The application asks you to type a 
number between 1 and 10.

 4. Type Hello and press Enter.

  The application displays an error message (refer to Figure 9-1).

 5. Perform Steps 3 and 4 again, but type 22 instead of Hello.

  The application outputs the expected range error message (refer to 
Figure 9-2).

 6. Perform Steps 3 and 4 again, but press Ctrl+C, Cmd+C, or the alterna-
tive for your platform instead of typing anything.

  The application outputs a specific message that tells the user what went 
wrong, as shown in Figure 9-6.

 7. Perform Steps 3 and 4 again, but type 7 instead of Hello.

  This time, the application finally reports that you’ve provided a correct 
value of 7.



167 Chapter 9: Dealing with Errors

 

Figure 9-6: 

Using 

multiple 

except 

clauses 

makes spe

cific error 

messages 

possible.

 

Handling more specific to less 
specific exceptions
One strategy for handling exceptions is to provide specific except 
clauses for all known exceptions and generic except clauses to handle 
unknown exceptions. You can see the exception hierarchy that Python 
uses at https://docs.python.org/3.3/library/exceptions.
html#exception-hierarchy. When viewing this chart, BaseException 
is the uppermost exception. Most exceptions are derived from 
Exception. When working through math errors, you can use the generic 
ArithmeticError or a more specific ZeroDivisionError exception.

Python evaluates except clauses in the order in which they appear in the 
source code file. The first clause is examined first, the second clause is exam-
ined second, and so on. The following steps help you examine an example 
that demonstrates the importance of using the correct exception order. In 
this case, you perform tasks that result in math errors. This example also 
appears with the downloadable source code as MultipleException3.py.



168 Part II: Talking the Talk 

 1. Open a Python File window.

  You see an editor in which you can type the example code.

 2. Type the following code into the window — pressing Enter after 
each line:

try:
   Value1 = int(input("Type the first number: "))
   Value2 = int(input("Type the second number: "))
   Output = Value1 / Value2
except ValueError:
   print("You must type a whole number!")
except KeyboardInterrupt:
   print("You pressed Ctrl+C!")
except ArithmeticError:
   print("An undefined math error occurred.")
except ZeroDivisionError:
   print("Attempted to divide by zero!")
else:
   print(Output)

  The code begins by obtaining two inputs: Value1 and Value2. The first 
two except clauses handle unexpected input. The second two except 
clauses handle math exceptions, such as dividing by zero. If everything 
goes well with the application, the else clause executes, which prints 
the result of the operation.

 3. Choose Run➪Run Module.

  You see a Python Shell window open. The application asks you to type 
the first number.

 4. Type Hello and press Enter.

  As expected, Python displays the ValueError exception message. 
However, it always pays to check for potential problems.

 5. Choose Run➪Run Module again.

  You see a Python Shell window open. The application asks you to type 
the first number.

 6. Type 8 and press Enter.

  The application asks you to enter the second number.



169 Chapter 9: Dealing with Errors

 7. Type 0 and press Enter.

  You see the error message for the ArithmeticError exception, as shown 
in Figure 9-7. What you should actually see is the ZeroDivisionError 
exception because it’s more specific than the ArithmeticError 
exception.

 

Figure 9-7: 

The order 

in which 

Python 

processes 

exceptions 

is important.

 

 8. Reverse the order of the two exceptions so that they look like this:

except ZeroDivisionError:
   print("Attempted to divide by zero!")
except ArithmeticError:
   print("An undefined math error occurred.")

 9. Perform Steps 5 through 7 again.

  This time, you see the ZeroDivisionError exception message 
because the exceptions appear in the correct order.

 10. Perform Steps 5 through 7 again, but type 2 for the second number 
instead of 0.

  This time, the application finally reports an output value of 4.0, as 
shown in Figure 9-8.

  Notice that the output shown in Figure 9-8 is a floating-point value. 
Division results in a floating-point value unless you specify that you want 
an integer output by using the floor division operator (//).



170 Part II: Talking the Talk 

 

Figure 9-8: 

Providing 

usable input 

results in 

a usable 

output.

 

Nested exception handling
Sometimes you need to place one exception-handling routine within another 
in a process called nesting. When you nest exception-handling routines, 
Python tries to find an exception handler in the nested level first and then 
moves to the outer layers. You can nest exception-handling routines as 
deeply as needed to make your code safe.

One of the more common reasons to use a dual layer of exception-handling 
code is when you want to obtain input from a user and need to place the input 
code in a loop to ensure that you actually get the required information. The fol-
lowing steps demonstrate how this sort of code might work. This example also 
appears with the downloadable source code as MultipleException4.py.

 1. Open a Python File window.

  You see an editor in which you can type the example code.



171 Chapter 9: Dealing with Errors

 2. Type the following code into the window — pressing Enter after 
each line:

TryAgain = True

while TryAgain:

   try:
      Value = int(input("Type a whole number. "))
   except ValueError:
      print("You must type a whole number!")

      try:
         DoOver = input("Try again (y/n)? ")
      except:
         print("OK, see you next time!")
         TryAgain = False
      else:
         if (str.upper(DoOver) == "N"):
            TryAgain = False
         
   except KeyboardInterrupt:
      print("You pressed Ctrl+C!")
      print("See you next time!")
      TryAgain = False
   else:
      print(Value)
      TryAgain = False

  The code begins by creating an input loop. Using loops for this type of 
purpose is actually quite common in applications because you don’t want 
the application to end every time an input error is made. This is a simpli-
fied loop, and normally you create a separate function to hold the code.

  When the loop starts, the application asks the user to type a whole 
number. It can be any integer value. If the user types any non-integer 
value or presses Ctrl+C, Cmd+C, or another interrupt key combination, 
the exception-handling code takes over. Otherwise, the application 
prints the value that the user supplied and sets TryAgain to False, 
which causes the loop to end.

  A ValueError exception can occur when the user makes a mistake. 
Because you don’t know why the user input the wrong value, you have to 
ask if the user wants to try again. Of course, getting more input from the 
user could generate another exception. The inner try . . . except 
code block handles this secondary input.

  Notice the use of the str.upper() function when getting character input 
from the user. This function makes it possible to receive y or Y as input 
and accept them both. Whenever you ask the user for character input, it’s 
a good idea to convert lowercase characters to uppercase so that you can 
perform a single comparison (reducing the potential for error).



172 Part II: Talking the Talk 

  The KeyboardInterrupt exception displays two messages and then exits 
automatically by setting TryAgain to False. The KeyboardInterrupt 
occurs only when the user presses a specific key combination designed 
to end the application. The user is unlikely to want to continue using the 
application at this point.

 3. Choose Run➪Run Module.

  You see a Python Shell window open. The application asks the user to 
input a whole number.

 4. Type Hello and press Enter.

  The application displays an error message and asks whether you want 
to try again.

 5. Type Y and press Enter.

  The application asks you to input a whole number again, as shown in 
Figure 9-9.

 

Figure 9-9: 

Using a 

loop means 

that the 

application 

can recover 

from the 

error.

 

 6. Type 5.5 and press Enter.

  The application again displays the error message and asks whether you 
want to try again.

 7. Press Ctrl+C, Cmd+C, or another key combination to interrupt the 
application.

  The application ends, as shown in Figure 9-10. Notice that the message 
is the one from the inner exception. The application never gets to the 
outer exception because the inner exception handler provides generic 
exception handling.

 8. Choose Run➪Run Module.

  You see a Python Shell window open. The application asks the user to 
input a whole number.



173 Chapter 9: Dealing with Errors

 

Figure 9-10: 

The inner 

exception 

handler pro

vides sec

ondary input 

support.

 

 9. Press Ctrl+C, Cmd+C, or another key combination to interrupt the 
application.

  The application ends, as shown in Figure 9-11. Notice that the message 
is the one from the outer exception. In Steps 7 and 9, the user ends the 
application by pressing an interrupt key. However, the application uses 
two different exception handlers to address the problem.

 

Figure 9-11: 

The outer 

exception 

handler 

provides pri

mary input 

support.

 



174 Part II: Talking the Talk 

Raising Exceptions
So far, the examples in this chapter have reacted to exceptions. Something 
happens and the application provides error-handling support for that event. 
However, situations arise for which you may not know how to handle an error 
event during the application design process. Perhaps you can’t even handle 
the error at a particular level and need to pass it up to some other level to 
handle. In short, in some situations, your application must generate an excep-
tion. This act is called raising (or sometimes throwing) the exception. The fol-
lowing sections describe common scenarios in which you raise exceptions in 
specific ways.

Raising exceptions during 
exceptional conditions
The example in this section demonstrates how you raise a simple  exception — 
that it doesn’t require anything special. The following steps simply create the 
exception and then handle it immediately. This example also appears with the 
downloadable source code as RaiseException1.py.

 1. Open a Python File window.

  You see an editor in which you can type the example code.

 2. Type the following code into the window — pressing Enter after 
each line:

try:
   raise ValueError
except ValueError:
   print("ValueError Exception!")

  You wouldn’t ever actually create code that looks like this, but it shows 
you how raising an exception works at its most basic level. In this case, 
the raise call appears within a try . . . except block. A basic 
raise call simply provides the name of the exception to raise (or throw). 
You can also provide arguments as part of the output to provide addi-
tional information.

  Notice that this try . . . except block lacks an else clause 
because there is nothing to do after the call. Although you rarely use a 
try . . . except block in this manner, you can. You may encounter 
situations like this one sometimes and need to remember that adding 
the else clause is purely optional. On the other hand, you must add at 
least one except clause.



175 Chapter 9: Dealing with Errors

 3. Choose Run➪Run Module.

  You see a Python Shell window open. The application displays the 
expected exception text, as shown in Figure 9-12.

 

Figure 9-12: 

Raising 

an excep

tion only 

requires 

a call to 

raise.

 

Passing error information to the caller
Python provides exceptionally flexible error handling in that you can pass 
information to the caller (the code that is calling your code) no matter which 
exception you use. Of course, the caller may not know that the information 
is available, which leads to a lot of discussion on the topic. If you’re working 
with someone else’s code and don’t know whether additional information is 
available, you can always use the technique described in the “Obtaining a list 
of exception arguments” sidebar earlier in this chapter to find it.

You may have wondered whether you could provide better information when 
working with a ValueError exception than with an exception provided 
natively by Python. The following steps show that you can modify the output 
so that it does include helpful information. This example also appears with 
the downloadable source code as RaiseException2.py.

 1. Open a Python File window.

  You see an editor in which you can type the example code.

 2. Type the following code into the window — pressing Enter after 
each line:

try:
   Ex = ValueError()
   Ex.strerror = "Value must be within 1 and 10."
   raise Ex
except ValueError as e:
   print("ValueError Exception!", e.strerror)



176 Part II: Talking the Talk 

  The ValueError exception normally doesn’t provide an attribute 
named strerror (a common name for string error), but you can add it 
simply by assigning a value to it as shown. When the example raises the 
exception, the except clause handles it as usual but obtains access to 
the attributes using e. You can then access the e.strerror member to 
obtain the added information.

 3. Choose Run➪Run Module.

  You see a Python Shell window open. The application displays an 
expanded ValueError exception, as shown in Figure 9-13.

 

Figure 9-13: 

It’s possible 

to add error 

informa

tion to any 

exception.

 

Creating and Using Custom Exceptions
Python provides a wealth of standard exceptions that you should use when-
ever possible. These exceptions are incredibly flexible, and you can even 
modify them as needed (within reason) to meet specific needs. For example, 
the “Passing error information to the caller” section of this chapter demon-
strates how to modify a ValueError exception to allow for additional data. 
However, sometimes you simply must create a custom exception because none 
of the standard exceptions will work. Perhaps the exception name just doesn’t 
tell the viewer the purpose that the exception serves. You may need a custom 
exception for specialized database work or when working with a service.

 The example in this section is going to seem a little complicated for now 
because you haven’t worked with classes before. Chapter 14 introduces you to 
classes and helps you understand how they work. If you want to skip this sec-
tion until after you read Chapter 14, you can do so without any problem.



177 Chapter 9: Dealing with Errors

The example in this section shows a quick method for creating your own 
exceptions. To perform this task, you must create a class that uses an exist-
ing exception as a starting point. To make things a little easier, this example 
creates an exception that builds upon the functionality provided by the 
ValueError exception. The advantage of using this approach rather than 
the one shown in the “Passing error information to the caller” section, the 
preceding section in this chapter, is that this approach tells anyone who 
follows you precisely what the addition to the ValueError exception is; 
additionally, it makes the modified exception easier to use. This example also 
appears with the downloadable source code as CustomException.py.

 1. Open a Python File window.

  You see an editor in which you can type the example code.

 2. Type the following code into the window — pressing Enter after 
each line:

class CustomValueError(ValueError):
   def __init__(self, arg):
      self.strerror = arg
      self.args = {arg}

try:
   raise CustomValueError("Value must be within 1 and 

10.")
except CustomValueError as e:
   print("CustomValueError Exception!", e.strerror)

  This example essentially replicates the functionality of the example 
in the “Passing error information to the caller” section of the chapter. 
However, it places the same error in both strerror and args so that 
the developer has access to either (as would normally happen).

  The code begins by creating the CustomValueError class that uses the 
ValueError exception class as a starting point. The __init__() func-
tion provides the means for creating a new instance of that class. Think 
of the class as a blueprint and the instance as the building created from 
the blueprint.

  Notice that the strerror attribute has the value assigned directly to it, 
but args receives it as an array. The args member normally contains 
an array of all the exception values, so this is standard procedure, even 
when args contains just one value as it does now.

  The code for using the exception is considerably easier than modify-
ing ValueError directly. All you do is call raise with the name of the 
exception and the arguments you want to pass, all on one line.



178 Part II: Talking the Talk 

 3. Choose Run➪Run Module.

  You see a Python Shell window open. The application displays the letter 
sequence, along with the letter number, as shown in Figure 9-14.

 

Figure 9-14: 

Custom 

exceptions 

can make 

your code 

easier to 

read.

 

Using the finally Clause
Normally you want to handle any exception that occurs in a way that doesn’t 
cause the application to crash. However, sometimes you can’t do anything to 
fix the problem, and the application is most definitely going to crash. At this 
point, your goal is to cause the application to crash gracefully, which means 
closing files so that the user doesn’t lose data and performing other tasks of 
that nature. Anything you can do to keep damage to data and the system to a 
minimum is an essential part of handling data for a crashing application.

The finally clause is part of the crashing-application strategy. You use this 
clause to perform any required last-minute tasks. Normally, the finally 
clause is quite short and uses only calls that are likely to succeed without 
further problem. It’s essential to close the files, log the user off, and per-
form other required tasks, and then let the application crash before some-
thing terrible happens (such as a total system failure). With this necessity 
in mind, the following steps show a simple example of using the finally 
clause. This example also appears with the downloadable source code as 
ExceptionWithFinally.py.

 1. Open a Python File window.

  You see an editor in which you can type the example code.



179 Chapter 9: Dealing with Errors

 2. Type the following code into the window — pressing Enter after 
each line:

import sys

try:
   raise ValueError
   print("Raising an exception.")
except ValueError:
   print("ValueError Exception!")
   sys.exit()
finally:
   print("Taking care of last minute details.")
   
print("This code will never execute.")

  In this example, the code raises a ValueError exception. The except 
clause executes as normal when this happens. The call to sys.exit() 
means that the application exits after the exception is handled. Perhaps 
the application can’t recover in this particular instance, but the applica-
tion normally ends, which is why the final print() function call won’t 
ever execute.

  The finally clause code always executes. It doesn’t matter whether 
the exception happens or not. The code you place in this block needs to 
be common code that you always want to execute. For example, when 
working with a file, you place the code to close the file into this block to 
ensure that the data isn’t damaged by remaining in memory rather than 
going to disk.

 3. Choose Run➪Run Module.

  You see a Python Shell window open. The application displays the except 
clause message and the finally clause message, as shown in Figure 9-15. 
The sys.exit() call prevents any other code from executing.

 

Figure 9-15: 

Use the 

finally 

clause to 

ensure spe

cific actions 

take place 

before the 

application 

ends.

 



180 Part II: Talking the Talk 

 4. Comment out the raise ValueError call by preceding it with two 
pound signs, like this:

##raise ValueError

  Removing the exception will demonstrate how the finally clause 
 actually works.

 5. Save the file to disk to ensure that Python sees the change.

 6. Choose Run➪Run Module.

  You see a Python Shell window open. The application displays a series 
of messages, including the finally clause message, as shown in 
Figure 9-16. This part of the example shows that the finally clause 
always executes, so you need to use it carefully.

 

Figure 9-16: 

It’s essential 

to remem

ber that the 

finally 

clause 

always 

executes.

 


